4 research outputs found

    A Set of components for real-time applications

    No full text

    Saklı Markov model ve Cobart kullanımı ile basit ve karmaşık davranışları öğrenme.

    No full text
    In this thesis, behavior learning and generation models are proposed for simple and complex behaviors of robots using unsupervised learning methods. Simple behaviors are modeled by simple-behavior learning model (SBLM) and complex behaviors are modeled by complex-behavior learning model (CBLM) which uses previously learned simple or complex behaviors. Both models have common phases named behavior categorization, behavior modeling, and behavior generation. Sensory data are categorized using correlation based adaptive resonance theory network that generates motion primitives corresponding to robot's base abilities in the categorization phase. In the modeling phase, Behavior-HMM, a modified version of hidden Markov model, is used to model the relationships among the motion primitives in a finite state stochastic network. In addition, a motion generator which is an artificial neural network is trained for each motion primitive to learn essential robot motor commands. In the generation phase, desired task is presented as a target observation and the model generates corresponding motion primitive sequence. Then, these motion primitives are executed successively by the motion generators which are specifically trained for the corresponding motion primitives. The models are not proposed for one specific behavior, but are intended to be bases for all behaviors. CBLM enhances learning capabilities by integrating previously learned behaviors hierarchically. Hence, new behaviors can take advantage of already discovered behaviors. The proposed models are tested on a robot simulator and the experiments showed that simple and complex-behavior learning models can generate requested behaviors effectively.Ph.D. - Doctoral Progra

    Simple and complex behavior learning using behavior hidden Markov model and CobART

    No full text
    This paper proposes behavior learning and generation models for simple and complex behaviors of robots using unsupervised learning methods. While the simple behaviors are modeled by simple-behavior learning model (SBLM), complex behaviors are modeled by complex-behavior learning model (CBLM) which uses previously learned simple or complex behaviors. Both models include behavior categorization, behavior modeling, and behavior generation phases. In the behavior categorization phase, sensory data are categorized using correlation based adaptive resonance theory (CobART) network that generates motion primitives corresponding to robot's base abilities. In the behavior modeling phase, a modified version of hidden Markov model (HMM), is called Behavior-HMM, is used to model the relationships among the motion primitives in a finite state stochastic network. At the same time, a motion generator which is an artificial neural network (ANN) is trained for each motion primitive to learn essential robot motor commands. In the behavior generation phase, a motion primitive sequence that can perform the desired task is generated according to the previously learned Behavior-HMMs at the higher level. Then, in the lower level, these motion primitives are executed by the motion generator which is specifically trained for the corresponding motion primitive. The transitions between the motion primitives are done according to observed sensory data and probabilistic weights assigned to each transition during the learning phase. The proposed models are not constructed for one specific behavior, but are intended to be bases for all behaviors. The behavior learning capabilities of the model is extended by integrating previously learned behaviors hierarchically which is referred as CBLM. Hence, new behaviors can take advantage of already discovered behaviors. Performed experiments on a robot simulator show that simple and complex-behavior learning models can generate requested behaviors effectively
    corecore